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ABSTRACT

Finite element methods to compute approximate solutions to flow problem involving
the flows of viscoelastic fluids are discussed. The primary goals of such investigations are at
least three: First, to evaluate the predictions of the many proposed constitutive theories for
viscoelastic fluids. Second, to model measurement flows in various rheological measurement
devices in order to quantify the deviation of the actual flow from the flow which must be
presumed to interpret the measurement. Third, it is hoped that these methods will prove
sufficiently robust to allow the simulation of idealized polymer processes with the aim
of aiding in the design of such processes and the required apparatus. The focus of the
current research of the author and a growing number of others is on two-dimensional,
isothermal, steady flows of incompressible fluids. While these restrictions will be seen to
be non-essential in theory, even the simplest calculations of non-viscometric flow solutions
will be seen to require a high degree of computational complexity in practice. Nevertheless,
the current finite element procedures seem to show promise in the continuing endeavor to
understand this challenging class of problems.

MS(MOS) Subject Classifications: 65N30, 76A0, 76A10

-- eiy Words: constitutive equation, viscoelastic fluid, finite element, measurement flow,differential model, integral model, characteristics, streamlines, hole-pressure ,..

Work Unit Numbers 2 and 3 (Physical Mathematics; Numerical Analysis and Scientific
Computing)
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FINITE ELEMENT METHODS FOR VISCOELASTIC FLOW

David S. Malkus*

INTRODUCTION

The idea to apply finite element methods to viscoelastic fluid flow problems, as

opposed to finite difference methods, seems to have stemmed from the desire to model a

variety of industrial polymer processes, which were often characterized by complex flow

geometries. In the early work of Tanner, Nickel, and Bilger [ij, one gets the clear idea that

the hope was to develop a rather general-purpose code which could be used by the industrial

rheologist to tackle geometrically complicated flow situations, particularly those flows like

the extrusion of a jet of liquid material, in which the complex geometry itself was unknown a

priori. Finite elements seem to be ideal tools for such modelling because of their geometric

flexibility. Since ref. I appeared, it has been discovered that there were a number of

unanswered questions about the modelling of viscoelastic fluids, which are even more basic

than the choice of discretization scheme. Many of the problems currently being solved by

this author and others are of an idealized nature and involve little geometric complexity, so

that they could just as easily be attacked by finite differences, and the questions to which

we seek answers could as well be asked about difference methods or element methods.

There are a number of investigators who have, in good fluid-mechanical tradition, opted

for finite difference methods 12-41. Much of what is said here could equally apply to the

difference approach, but in order to limit the present discussion to the manageable, only

finite element methods will be discussed here.

The reader should be forewarned that the author's own predilection is for the devel-

opment of general purpose methods which can be applied to broad classes of viscoelastic

fluid flow problems in complex geometries without reprogramming. His hope is that once

the basic difficulties involving choice of constitutive equation, convergence of nonlinear it-

eration methods. the effect of singularities of unkown order - and others still - are more

firmly in hand, the vision on ref. I may be more completely realized. In the meantime,
the author and other researchers have tended to solve problems which do not tax the ge-

ometric flexibility of the finite element formulation (and consequentially, do not illustrate
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States Air Force under Grant No. 84-NM-399 and the National Science Foundation under
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its power). These are flows which might be classified as "measurement flows" in many

cases - very well-characterized flows which can be established in laboratory situations

for the purposes of making measurements of material properties. The lack of geometric

complexity leads to flows which can be idealized as flows for which the equations of motion

can be solved analytically; however, the real flow is some perturbation of the idealized flow:

Cone-and-plate 151 flow actually has free surfices, though it is observed that this does not

lead to an unacceptable disturbance in the assumed form of the flow-field, at low enough

shear-rate. The entrance into a slit-die 151 perturbs the flow-field in the entry region, but

the velocity field and pressure gradient soon readjust themselves to those characteristic of

channel flow, at least at low enough shear-rate. There are many other such flows, includ-

ing plane flow over a transverse slot, discussed below. The common characteristic of such

flows is that they are perturbations of known flows; we know rather well what qualitative

features the numerical results must display. On the other hand, the effect the perturbation

of the assumed flow nay have on the measurements, particularly at the extreme range of

shear-rate, is a question which seems to be appropriately addressed by numerical mod-

elling. So such flows seem to be modest testing grounds for the methods under discussion

here, yet also seem to raise questions to which numerical modelling may be able to supply

useful answers.

We will see that investigations of such problems, humble though they be compared to

what might be envisaged, raise thorny questions which are still only partially resolved. The '

questions seem to have at their heart the question of what constitutive equation should be

used and why. The choice of constitutive equation will be seen to govern a basic decision

about the kind of finite element method which must be used. It will be observed that

different constitutive equations can lead to radically different behavior of the numerical

method, yet there seems to be little to differentiate between them on physical grounds.

CONSTITUTIVE EQUATIONS

Perhaps the most basic choice in the design of a numerical method devolves from

the fact that there are two seemingly different classes of constitutive equations which have

been proposed by rheologists and which seem to be numerically tractable: the differential

and the integral 16-91. What is meant specifically by these terms will be defined shortly;

the important thing to note is that these are intersecting classes of constitutive equations,

yet neither class seems to entirely contain the other. At first sight, the two classes of

2



constitutive equations seem to demand totally different numerical methods, forcing the

numerical modeller to make an irrevocable choice of methodology at the outset. An im-

portant point to be observed here is that there is more in common between the two classes
of equations than first meets the eye, and thus the potential exists for a more unified

numerical approach than is the current practice.

General Differential Constitutive Equation

a = -pI + 21A(0)Rdi + (I - R)E

N (1)
E=

k=V

where u(0) is the zero-shear viscosity, 4 the strain-rate tensor, R < 1 is a retardation ratio

defined by R = A/T for a characteristic relaxation time, T, and retardation time, A < T,

and p is the hydrostatic pressure function. The terms on the right-hand side of eq. (1) may
be interpreted as an isotropic contribution to the stress, the Newtonian contribution to the

stress - possibly arising from a Newtonian solvent - and the viscoelastic contribution to
the stress, respectively.

The "extra stress" tensor, E, determines the non-Newtonian contribution to the
total stress tensor. In a differential constitutive equation, it is determined by one auxiliary

equation for each of the "partial stresses," T k 181,

Akar- + Bk = 0
Air ar (2)

= + (v V)r - ,(Vv)T - (Vv)r
At at

where Ak is the kth relaxation time in a relaxation spectrum (which may be infinite).

The T mentioned above can be taken to be a mean relaxation time in the spectrum. Bk

is a tensor function which may depend on velocity gradients and stresses(in a possibly
nonlinear fashion). Specific examples will be cited below. Note that the upper convected

time derivative, j, has unknown stresses multiplying unknown velocity derivatives, and

problems with such constitutive equations are inherently nonlinear, even for the simplest.
linear choices of Bk. With the obvious correspondence of notations, eqs. (1) and (2) are

in the same form as the corresponding equations in ref. 6, generalized slightly in order to

allow the possibility of more than one partial stress.

3
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General Single-Integral Constitutive Equation

The single-integral designation is intended to make a distinction between the consti-

tutive equations under consideration here and those involving multiple, iterated integrals.

In fact, the theories described here may involve sums of more than one "single integral."

While it makes perfect sense to consider transient flows with single-integral constitutive

equations, the computational complexity implied by such flows is such that a new genera-

tion of bigger, faster computers would probably be required. Here we consider steady flows

only, whereas no such restriction was imposed on our discussion of differential constitutive

equations. The assumed general form of the stress field is given by

= -p + 25 40)R + (I - R)v' (3)

where the symbols in the first two terms are the same as those in eq. (1). The extra stress

in eq. (3) is given by o, which plays an analogous role to E in eq. (1). For the integral

constitutive equations, however, the extra stress is given by an explicit calculating formula,

rather than implicitly, as in eq. (1). It is assumed to have the form

o J SO(')(,(r)mlr) di (4)
l=1 oo

where ml is a memory function, and So ('1) is a strain-measure. The memory function mi(r)

has the following form in most examples of which we are aware:

T-' T O(5)
k=l

The constants Gil) and p(4) whether chosen experimentally or theoretically, must be chosen

so that f o q(r)ml(r) d < oo, for all polynomials, q, of arbitrary degree. This is automatic

unless N, = oo, which does occur in practice. In fact, one can see that by interchanging

the order of integration in eq. (4) with the summation in eq. (5), the stress contribution

of each of the single integrals in eq. (4) becomes a sum of partial stresses, each associated

with a member of the relaxation spectrum, T/pk, each given by integration of a strain-

measure against a single exponential. Thus T/pk in eq. (4) and Ak in eq. (2) are analogous

relaxtion times, and E and a are analogously expressed as sums of partial stresses.

For some differential constitutive equations, the relation between them and a re-

arrangement of eq. (4) into partial stress form is more than an analogy; the integral

4
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constitutive equation amounts to a direct solution of the hyperbolic equations (2) for a

fixed velocity field along the streamlines, which turn out to be a double family of real

characteristics 1111. Examples of this will be pointed out subsequently. It is important to

note that this correspondence between integral and differential constitutive equations only

holds in very special cases. There are constitutive equations derived on physical grounds,

which have an integral form, yet cannot be identified ks chatacteristic solutions of any dif-

ferential constitutive equation given by eq. (2). Likewise, there are differential constitutive

equations which do not seem to yield to closed-form solutions along the characteristics in

the form of eq. (4).

The strain measures in eq. (4) are assumed to have the following dependencies:

So() = So()(Eo(r), Eo-(r), VvIx(,)], Vix(O)1) (6)

x(O) is the position at which a' is evaluated in the'current configuration of the fluid. x(r)

is that particle's position at time r. in the past, and v is the velocity field carrying x(r)

to x(O), inducing the stress field. Eo(r) is a deformation-gradient measuring the strain in

the deformation at time r relative to time 0, induced by v. Eo(r) may be the usual

or something similar but somewhat different. It can be chosen to correspond to various

convected derivatives in differential models 18,9] and can physically represent the'strain

due to molecules which undergo motion relative to the motion of the continuum (non-affine

motion) [9,12].

To compute the deformation-gradient, it is neccessary to construct the path x(r),

which is a streamline; the gradient is a measure of strain at the historical time and position

along that path and the present position. The following equations describe the path and

strain:

x(o)=xo (7)

Eo(r) = F(x( ) ;Vjx(r)])E(r))

Eo() = I
where rF = 0 for all r < 0. Note that this is a system of equations to be solved in reverse

time. The first group is possibly nonlinear and determines the streamline; the second group

is a linear system whose non-constant coefficient is determined by the streamline solution.

It is also not hard to deduce that Eo(r) is the identity in the present configuration and

maintains det(Eo(r)) = 1 for all historical time 1I0 i.
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Examples:

1. Differential only:

(a) Phan-Tien/Tanner (PTT) 16)
N" = 1, T = A, 17 R l )#,(0)
B B1 = rexp{-Irr} - Z76 + Af(-e )

'1

is a non-dimensional parameter of the model, as is c; When the latter parameter

is not zero, there is no known integral form of the PTT equation.

(b) Leonov [61, White-Metzner, etc. 171.
2. Integral only:

(a) Doi-Edwards [13]

M=1, N=oo, Pk=(2k-1)2

Gk = C/Tpk, F = Vv,C= ,(0)
So(T) = ,(1, II)C-'(r) + 2 (I,I)Co(T)

Co(T) = EoT(r)Eo(r)

The scalar functions 01 and 02 are functions of the two nontrivial principal invariants,

Iand II, of Co1 (r).

(b) Curtiss-Bird [141

0),,= 2 oo ' P(2) = = (2k-12

G( = Ch/Tpk, G(2) = C2/p 2 , F = Vv
961(o) 192;(o)

C, = 4 (1 + 2/3)' C2 = 7 (l + V/3)

So"I) is the same as So of (2a), and So(2 ) is a more complicated tensor function of

Co, Co1 , and Vv(0) 110,14J. i is the "link-tension" coefficient, a non-dimensional

parameter of the model; with c = 0, the Curtiss-Bird equation reduces to the Doi-

Edwards.

3. Both differential and integral:

(a) Oldroyd/Jeffreys (taking N = 1 for simplicity, not necessity) [8,91

T=A, N=I

B = - 2(1 - R) (0)4 + Aa(ir + rd)

6
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Note that taking = a and = 0 in (1a) yields (3a). Dri

(b) Johnson-Segalnian (with a nonzero R) [9,121, 1N8PIECrg .D

T=A, N=M=I, pl=.

G -j (O)/A, F= a; - t-
So(r) = Eo1 (r)EoT (r) ---1 A-A

(3b) is the integral form of (3a) (and thus of a special case of (la)) 191. w is the ,

vorticity tensor. The parameter a is a "slip parameter" in the derivation of (3a), r

which allows for non-afline motion of a strained molecular lattice with respect to the ,,-

continuum [9,121.

CHARACTERISTICS AND NUMERICAL METHODS

Steady Plane Flow of a Johnson-Segalman Fluid

The author has performed computations with the fluid described by (3a) and (3b).

Since his computations employ the integral form of the constitutive equation, he refers to

the model as Johnson-Segalman. It turns out that, for the purposes of analyzing the system

of equations to be solved, it is easier to deal with the differential form (3b). The analysis

discussed here has only been carried out for this one differential constitutive equation (it

does include several simple Maxwell - type equations for particular choices of a 191). It is

hoped that the conclusions hold for other differential models - and because of the analogy

alluded to earlier - to integral models as well. In what follows, take R = 0 and N = 1.

The assumed form of the equations of steady motion is

V I + f = p(u. V)u (8)

where u is the (two-dimensional) velocity field, a is the stress field, f a body force, and

p the fluid density. At present it is assumed that the flow is a plane flow, and that the

material is exactly incompressible,

V.u=0 (9) N

For the Johnson-Segalman fluid with parameters as specified, the equations of stress, mo-

7
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IX

tion, and continuity take the form

A B o0At + =

p(u.V)u +Vp-V.r=o (10)

V .U = 0

The analysis of ref. 11 begins by observing that in this differential form, eqs. (10) are a

quasilinear system, whose characteristics may be given explicitly in terms of a solution..L

The analysis of ref. 13 reveals that below a critical stress

1. For a fixed u, the stress equations are hyperbolic. .

I. Streamlines are a double family of real characteristics of the stress equations.

111. Solution for r by the method of characteristics yields a problem which is elliptic in u.

The stress is given by an integral stress calculator of the form of eq. (4).

It should be noted that the sense in which the equations of motion are elliptic must be

carefully qualified: There are no real characteristics of the equations of motion alone, be-

low the "sonic transition" (critical stress). But since there may be characteristics entering

through boundaries at inflows (with corresponding outflows), stress data - or the equiva-

lent - must be somehow specified there. So the whole problem is not elliptic in the usual

sense, when characteristics cross domain boundaries.

There is a way to make the equations of motion elliptic in the usual sense when a -

given stress field is specified, ap! that is to rewrite eq. (10) in equivalent form,

AT
A!--! + B =0

p(u. V)u + Vp- V2u =V. r- V2u (Oa)
V~u=O

in which p is a positive, viscosity-like constant. In an iterative solution method which

uses the right-hand side of the middle equations of eqs. (lOa) from a previous velocity

iterate and the stresses calculated from the hyperbolic stress equations in that velocity

field, solution for the next velocity iterate can be a truly elliptic problem. This is exploited

in some of the methods to which we now turn our attention.

9. ",%"



The Spectrum of Discrete Methods

The results of ref. 11 have interesting ramifications for numerical methods for vis-

coelastic fluids. In what follows, we assume that computations are to be carried out in a

steady flow regime below the critical stress for type-change (numerical experiments by the

author suggest that with the contitutive equations currently employed, the critical stress

isso large as to be essentially inaccessible by current numerical methods). We assume that

the characteristics of the equations to be solved for any constitutive equation of the forms

considered in this paper are the same as they are in the Johnson-Segalman case. While

the analysis has not been carried out in such generality, this assumption does not seem

unwarrented in the light of numerical evidence. The methods currently employed by most

researchers fall somewhere on the spectrum of methods given in Table 1.

MFTIIOD MIXED STRESS ALT. v,p PURE v,p

KEY Variant I Variant 2 NumericalI Analytic

FEATURE Total numerical * Meth. chars. Sreamline Streamline,

PDE Mixed l|yperbolic/Elliptic Ilyperbolic/Elliptic Elliptic Elliptic

TYPE ____ _'"_
I I ,.'

T I T i '

UNKS. UI UIP Uup I Iu
I UIp

,17 ,
1 77, I[7 ,I] 1 '1 i, Tb,,....

,11(151 1201 1101

,I, I "

Table I

Spectrum of Finite Element Methods for Viscoelastic Flow.
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t the extreme left end. there is a class of methods applicable, in principle, to any consti-

itive equation which has a differential form. These methods treat the quasilinear system

a system of mixed type and discretize velocity, pressure. and extra stress independently

a mixed/Galerkin method. At the extreme right end of the spectrum are methods which

)ply to those constitutive equations which have an integral form. They discretize only

ial velocity fields in an iterative sequence of approximations to the solution of the equa-

Dns of motion and continuity; even the pressure can be eliminated if a penalty approach is

;ed. In these right-wing methods, stress is computed via the integral stress calculator of

1. (4) as a functional of the trial velocity fields. Each of the extreme right- and left-wing

ethods have their own distinct advantages and disadvantages. Left-wing, mixed methods

.ed many stress unknowns - particularly if more than one relaxation time and corre-

oonding partial stress must be discretized. Left-wing methods thus involve large matrices

ith large bandwidths. but transient problems can be solved by well-known time-stepping

ethods. Left-wing methods also require the specification of boundary data where charac-

ristics emanate from boundaries. How to specify such data for partial stresses is a subtle

atter 111,, and the possiblity of over or under specifying boundary data is real one. On

ie other hand, left-wing methods give the Galerkin residual in terms of stress unknowns,

hich are primary variables; thus differentiation of the Gaerkin residuals with respect to

)dal variables as required to form Newton's method for solving the discrete nonlinear

alerkin equations is straight-forward.

The right-wing methods make some direct trades of advantage for disadvantage when

impared to the left-wing methods. Only velocities need be discretized; computational

)rk is not increased by adding more relaxation times. The specification of stress on

coming characteristics can be handled implicitly, in a way that seems to work rather

l. if not theoretically justified at present. The incoming streamlines are assumed to be

ose of a known flow extending to infinity in a known geometry (such as channel flow), and

us the required contributions to the integrand of eqs. (4) and (11) are actually known

alytically once 1,P '--ticle enters this "predecessor flow" 110,19i. On the other hand,

insient methods seen. rly impossible. and Newton's method seems difficult, at best,

'cause of the complicate inctional relation between the stresses in the Galerkin residual

d the velocity field. a iost cases. it seems that the choice of left-wing and right-wing "..

Pthod is made a-prio by the form of the constitutive equation: integral models seem to

mand right-wing me.hods and differential left-wing methods.

10
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Figure 7

Flow with the Concocted Constitutive Equation at D, 3.7.

The flow pictured in Figure 6 has D, = 2.5, L, 1.8. and viscosity reduced to 460/7 of its

zero-shear value. The flow of Figure 7 is at D, 3.7. but Lc, 1.6, which is lower than

the stress-ratio of Figure 6: in Figure 7, the viscosity is 400% of its zero-shear value. The

;tress-ratio of the concocted fluid model goes through a maximum, due to the retardation

Lime; the flow of Figure 6 has shear-flow at the wall which is just about at that maximium.

16 Laguerre integration points were used for the quadrature of eq. (11) when computing

,he flows of Figures 6 and 7.

In both the flows of Figure 6 and Figure 7. the Broyden iteration scheme had a

ougher time converging than it did with the Curtiss-Bird fluid at a much higher D, and

L,. The D, : 3.7 case took 40 iterations to get only a factor of 25 reduction in the residual.

kttempts to converge at higher D, failed. The D, 2.5 case took 20 iterations to get a

'actor of 20 reduction in the residual. Thereare some qualitative differences between the

lows of Figures 6 and 7 and the flow of Figure 5. These may be related to the greater

lifficulty in convergence, though this cannot be stated with any certainty. We note that

he streamlines just outside the slot are. if anything. more distorted by the presence of the

24
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damping function ,.'.-

O(II) = ezp(-cv11J- 3) (22)

which just multiplies the strain-measure, So, of the Johnson-Segalman model. II is the
second principal invariant of the non-aifine strain measure, Eo iEoT No physical reasoning

: .-. .-

lies behind this; damping functions are intended to account for the effect of breaking

temporary junctions in the lattice under large strain. To what extent this would happen

if non-affine motion of the lattice is allowed, or, if so, whether the damping function for a

non-affine strain-measure should take the form of eq. (24) is unknown. At any rate, the

flow of Figures 6 and 7 use this concocted model, and take c = 0.1; the other parameters

were as just described for the Johnson-Segalman with a retardation time.

,- -. -

Figure 6

Flow with the Concocted Constitutive Equation at D, 2.5.-

r

-..- -
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constitutive equations 12,7,16,201. The run was terminated when the residual measure of Z

ref. 10 had been reduced by a factor of 84 (a similar reduction factor to those reported

in ref. 10). The residual appeared to be continuing to converge, but the computation was

terminated because the experience of ref. 10 shows that most quantities of interest have
stabilized to a couple of decimal digits with a comparable residual reduction. This residual

reduction was accomplished in 18 inverse Broyden iterations. The computation took 15

hours of VAX 11/780 CPU time on a VAX with a standard configuration, using double

precision hardware.

There are several interesting features of Figure 5. The flow is from right to left, and

we observe substantial vortex distortion of the type observed in ref. 4. We also note that

there is little disturbance in the streamlines near the mouth of the slot when compared

to those in the Stokes-flow of Figure 4 or the streamlines in the flow visualizations of ref.

4. Also, of the five equally-spaced streamlines in the slot, three are crowded together

near the dividing streamline; this indicates that the velocity of fluid in the vortex is lower

compared to the velocity at the dividing streamline in the non-Newtonian case than it is

in Stokes-flow. This appears to be due to shear-thinning; the viscosity in undisturbed flow

at the wall in the case of Figure 5 is only 9% of its zero-shear value. The very high driving

stresses in the die are not transmitted to the slot, and the fluid slides by without feeling

much effect of the slot.

We turn our attention to the flow of another fluid in the same geometry, using the

same mesh as before. The author really would have liked to have shown results involving -1 7
a Johnson-Segalman fluid at significant De, but these are not available. Johnson and

Segalman found that a value of their slip-parameter of a = 0.87 gave good agreement of

viscometric functions with published data 112]. With this value of a, a very high zero shear **

viscosity (implying negligible Reynolds number), and R = 0 in eq. (3), the inverse Broyden

iterations of eq. (18) diverge dramatically at about D, = 1.0. Adding a substantial

Newtonian viscosity with R = 1/3 helps some, as one might expect, but divergence ensues

at a disappointing De = 1.5. In order to obtain an integral constitutive equation which

shear thins less than Curtiss-Bird, behaves better than Maxwell, does not imply very

peculiar lattice motion which would be the result of taking a very small slip-parameter (911,
and which allows computation with at least a moderate D.. the author just tinkered with

the .Johnson-Segalman equation. Favorable results were obtained by adding a Wagner-type

22
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D, is the "Deborah number" and L, the "stress-ratio." - is the shear-rate at the wall of the

die, far from the slot, and N, and a are taken at the same location. For the flow pictured

in Figure 5, De = 17.9, and L. = 4.1; the computation used the Curtiss-Bird equation

110,14], with the same parameters given in ref. 10 for the "EFN Fluid." This is intended

to model a high-viscosity, concentrated polymer system without significant branching of
the molecular chains. The resulting viscosity is so high (; 10

4 poise at zero shear) that

the Reynolds number is negligible, even when shear-thinning is accounted for.

I.

Figure 5

Flow of a Curtiss-Bird Fluid at De 17.9.

The computations of ref. 10 were carried out with Gaussian memory formulas (eq. (11))
with ten points; computations were reported there up to D, = 7.5. It has since been :
determined that the ten-point Gaussian formula loses its accuracy in simple shearing flow i"

(and thus in the undisturbed die-flow) for De much larger than that. Furthermore, one *

observes that the ten-point formula is inaccurate enough to lead to an artificial shear-

stress maximum 110,20 for very high D. For that reason, the computations leading to

Figure 5 were carried out with 18-point formulas for each memory-integral. With the

18-point formula, no difficulty in convergence of the Broyden iterations was observed -
no "barrier" or "high Weissenberg number problem" which has been observed for other

21*
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Figure 4

Stokes-flow in the Domain of Figure 2, Using the Mesh of Figure 3.

We note that the symmmetry of the streamlines is perfect to numerical accuracy, and any

very slight deviations from symmetry in Figure 4 arise from the streamline integration used

for graphical purposes 125]. This integration does not make use of the element-wise conic

sections on triangles, but an approximate method. In all streamline plots shown here, the

streamlines are not equally spaced contours throughout because the vortex in the slot is V

so faint in comparison to the flow outside. Instead, there are ten equally spaced contours

outside the slot, the streamline at the wall in which the slot is cut, and five equally spaced

contours in the slot. These latter contours have values which evenly divide the range of

values between the streamline at the wall and the maximum value of the stream function.

We turn our attention to the non-Newtonian flow illustrated in Figure 5. Among

other things, Figure 5 illustrates the fact that there are some constitutive equations with

which rather high shear-rates can be obtained. Two non-dimensional numbers are useful

in quantifying the degree of nonlinearity due to non-Newtonian effects,

De T A) (21)

LO N,/o
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Figure 3
Mesh Discretizing the Domain of Figure 2 with 1006 Macroelements.

The distribution of elements was determined from extensive numerical experimentation,
and the author believes it produces more accurate results than do any of those of ref. 10.
The domain parameters ofFigure 2are =1, b=O0.5, and q= 2. Figure 4shows aplot
of the streamlines in Stokes-flow (Newtonian, zero Reynolds number) obtained using this
mesh; this will serve as a useful baseline in what follows.
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a long history and is discussed in some detail in refs. 3.4.10,17,20. and 22-25. It is of e.

practical importance, because it seems feasible to design measurement devices based on '

the relation between Pe and N1. which predict the latter based on continuous measurement

of the former and the wall shear-stress in undisturbed flow, a :10,23,241. It has been found

experimentally that the P, - N, relation accurately describes the behavior of various -.--'

viscoelastic fluids in flows over slots :23,24,. This appears to happen in spite of the fact

that the assumptions behind the derivation '22 of eq. (20) are violated 10,231. The

purpose of the investigation undertaken by the author is to explore this apparent anomoly

in detail, using his numerical techniques. Significant progress has been made in these

investigations since the appearence of ref. 10; however. these results are best presented

in a future publication. Here we will focus on some interesting qualitative features of

plane flow over a transverse slot and the apparent relation of these qualitative features

to the numerically observed hole-pressure. The results will also illustrate the dramatic

and somewhat puzzling differences resulting from using different constitutive equations to

study the same flow.

Numerical Results

Figure 3 illustrates a mesh of 1008 crossed-triangle macroelements, which has been

designed by the author to discretize the domain of Figure 2 and to investigate hole-pressure

problem of the previous subsection.

A.-
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from which one may deduce that if HI were the inverse Jacobian, eqs. (18) would be

Newton's method. The inverse Broyden method given by eqs. (18) is a fairly robust

method for computations with some constitutive equations, but it diverges at rather low

Deborah numbers with others. The reason for this is not entirely clear at this point, but

one avenue worth exploring fully is the possibility of finding more accurate approximations

to the actual inverse Jacobian, and the author is currently involved in studying this matter.

A MODEL PROBLEM

Plane Flow over a Transverse Slot

- I -

Id

Figure 2

Domain for Plane Flow over a Transverse Slot.

Here we consider the flow of a viscoelastic fluid over a transverse slot [3,4,10,17,20,22-

251. The author 110,261 has been investigating the prediction that at negligible Reynolds

number (based on slot width), the difference between the thrust on the wall at the top and

bottom of the slot, pictured in Figure 2

P, = P,- A (20)

is related to the first normal stress difference., NI, in a simple fashion. This problem has

17



Solving the Nonlinear Equations

Here we briefly discuss the kind of numerical method which can be used to find the

zero(s) of eq. (14). One may deduce that the functional dependence of the right-hand -

side of eq. (14) on the unknown velocity field is so complicated that Newton's method is

difficult at best. On the other hand. it has been found that iterative methods based on

the finite element approximation to the Stokes operator, which puts all nonlinearity on

the right-hand side, do not have very favorable convergence properties, even at moderate

Deborah numbers 12,7,19]. The method illustrated here is a Gauss-Newton type which be-

gins from an estimate of the solution, uo, which represents nodal values of a finite element

solution computed using the Stokes operator, but with inflow and outflow boundary condi-

tions appropriate to the non-Newtonian solution (the "pseudo-Newtonian" solution). The

iteration matrix is an approximation to the unavailable inverse Jacobian. The inverse Jaco-

bian approximation begins using the Stokes approximation and continues, using rank-one

updates, ri and vi, to better approximate the inverse Jacobian as the iteration progresses.

This method is known as the "inverse Broyden" method, and it is quite efficient, as it only

requires a single matrix elimination proceedure to be carried out on Ho.

for k = 0

Ho = inverse Stokes' matrix,

Uo= pseudo-Newtonian solution, (17) 4
R(uo) = residual of eq. (15) at uo

So = -HoR(uo)

for k = 0,1,2,...

Uk+1I = Uk 4 5 k, -.

yk = R(uk+1 ) - R(u,),

Vk = HkTsk!(SkTHkyk), (18) "

rh = Sk - Hkyk,

H = Ho * . rjvjT , *-% *

Sk-s I - vkTR(uj,+)Irh,

next k.

By rearrangement of eq. (18), it follows that

Uk-I - Uk - Sk

sh= HkR(uk), (19)

,- .16.. ,."
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The Stream and Drift Functions

The construction of the particle paths of Figure 1 and the accumulation of the
deformation-gradient via eq. (13) are the dominant computational cost of the method
presented here. There are several interesting aspects of the chosen finite elements which

contribute to the efficiency with which this can be done. Since the interpolating functions
determining the test and trial functions on each triangle are linear, it follows that there is

a quadratic stream function on each triangle, O(x) (it actually turns out to be a quadratic
spline on the whole mesh). Thus the boundary crossings illustrated in Figure 1 can be
found in sequential triangles upstream of each £ using the quadratic formula,

O(xI) = V(x 2 ) (15)
I(X2,'X) = .0 :

The relation involving I(.,.) is the requirement that x2 be on the line defining one of the
boundaries of the current triangle. Thus eq. (15) is a quadratic equation in one of the
components of x 2 , either z or x. To associate a historical time with X2, it turns out that

for the chosen elements, the time of transit between two points on the same streamline -

can be determined from the drift function, which is known analytically 1101.

1 - 72= w(x) - w(x 2 ) (16)

The drift function is denoted by w; its analytic expression involves various cases depend- I'

ing on the characteristics of the pathline equations in eq. (7) [10]. Stress calculation can
thus proceed by finding boundary crossing points only and accumulating strain at these

points via eq. (13), using the times associated with the boundary crossings computed via
eq. (16). The accumulation proceeds until the boundary crossing times in one element,

11 and 72, bracket one or more temporal integration points of eq. (11), at which time(s)
the integrand of eq. (11) can be evaluated using the analytic expression for the strain 10'
and eq. (13) with r taken as the value of the temporal integration point(s). Since there
are potentially six solutions to eqs. (15), when each boundary of the current triangle is
considered as a possible candidate on which to find x2. the drift function is also indispen-

sible in determining the actual boundary crossing of a particle as the one which gives the

maximum value of r2 satisfying r2 < r."

1 5--.--.:



by
Eo(r) = Eo(ri)E,, (r) (13)

X T 2

Figure I

Composite Elements and Particle Paths for Right-Wing Method.

The computation of stress may thus proceed by piecing together streamlines and"!

strain -measures along them analytically. This process is illustrated in Figure 1. Inspection

.. o

of the discrete Galerkin equation

F8,1o'. • vh + 2z(. _uh)(V. _V) + plu. T)uh.• v h .F(. 0 (14)

"... shows that, with the computation of stress at a finite number of favored points in the.'.:

-." domain, an approximation to the Galerkin residual of the equations of motion can be "'..''

obtained. Eq. (14) comes from numerically integrating the usual Galerkin residual of the'-":

equations of motion (8); Oe is the area of triangle e in the finite element mesh, &, is the . ,
corresponding triangle centroid (spatial integration point) vht is an arbitrary Galerkin

'14
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at discrete points in historical time. rk. For a single relaxation time, or N = I in eq.

(5), the Gaussian formula is given by the well-known Laguerre family of formulas. For",

other memory functions (assumed to be sums of exponentials here), analogous formulas

can be derived 110]. It should be pointed out that the number, N,,, of integration points

is not explicitly related to the number, N. of relaxation times (which is often infinite).

This is in distinct contrast to the situation with differential constitutive equations, where

each relaxation time adds a new partial stress and a new set of stress equations to be

solved. With the integral form, adding relaxation times need not increase Np and the

corresponding computational effort. Experience shows, however, that if adding relaxation

times significantly spreads out the-relaxation spectrum, an increased NP may be required

to maintain accuracy.

Evaluating the Strain

The author has chosen a basic approach to solving the tracking equations (7) which

involves the choice of finite elements for which the solution for the particle pathline (stream-

line) is known exactly in piecewise fashion as it crosses each element. For this purpose,

the quadrilateral element composed of four linear triangles defining the diagonals of the

quadrilateral have been chosen; these are illustrated in Figure 1. The composite pattern is

chosen to produce accurate satisfaction of the continuity equation with an element of suffi-

cient over-all accuracy. Linear triangles in other arrangements will not do this. In order to

compute the integrand of eq. (11), we observe that if a pathline is known, the strain mea-

sures of eq. (6) are readily computed from nodal variables and assumed interpolations if

Eo(r) is known. Eo is the solution to the evolution equations for the deformation-gradient, -.

which are part of eqs. (7). This solution is known piecewise analytically on each element

of the type which is employed. We proceed as follows: We define Eo(r,) to be the solution ._'-..

to the strain evolution equations back to historical time rT, at which the particle being

tracked is located at the boundary of some triangle in the mesh. We define El, (r) to be

the solution to the following strain evolution equation, which is derived from eq. (7) by

modifying the initial condition to an interface condition:

,, = ;E71  (12) .. !

E,. = I

It turns out that E,, can be easily determined analytically for the chosen elements [10].

The whole deformation-gradient back to r < r, can then be mutiplicatively accumulated . .

13 " .-% ".
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fundamental difference between integral and differential forms is only the question as to
whether a closed-form quadrature is known for the stresses or integration of ODEs along

the streamlines is required.

An alternative way to look at. Table I is as an indicator of the degree of "La-
grangianess" of the various methods. From that point of view, the left and right wings

of the table do not define extremes any longer. One may properly consider the left-wing
methods to be totally Eulerian in that all quantities solved for are referred to fixed spa-
tial locations and not to particles, as we move rightward on the table, streamlines -

and thus particle paths - begin to play an increasingly important role. But the right- -
wing methods still retain the equations of motion in Eulerian form and are only partially

Lagrangian in their need to track particles in order to compute stresses. At the far right
wing of Lagrangianess is found Hassager's method 121 ], which uses a deforming mesh. This
method has some drawbacks - particularly in flows with recirculations - but the method

is worthy of note because it seems to be the only method currently employed which can

do transient analysis with integral constitutive equations.

COMPUTATION WITH A SINGLE-INTEGRAL MODEL

It seems appropriate to present some numerical results in this paper, but in so doing

we must of necessity limit our consideration to those results with which the author is

most familiar. This means that we will look at the extreme right-wing method of Table I, *

applied to a flow which is essentially a measurement flow. We first turn our attention to an
overview of some of the problems associated with the implementation of a particle-tracking,
pure v, p method. More details may be found in refs. 7 and 10.

,. Evaluating the History-Integral

The most basic problem to be dealt with in devising a numerical method for integral
constitutive equations is the numerical approximation of the history-integrals in the stress

calculator, eq. (4). Consider a typical memory function, m(r); the most efficient way to
compute the history-integral, presuming the components of the strain measure are known,

*. is via a Gaussian formula,
f 0 N,.

,J So(r)m(r) dr wkSo(rk) (11)

The formula is in the form of a weighted sum with weights, Wk. of the integrand evaluated

12
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The middle-of-the-road methods in Table 1. at first sight, seem applicable only to

differential models and thus seem to be left-wingers at heart, but on closer examination.

they point the way to a unification of the two extremes. The middle-of-the-road methods

are currently under development by Tanner and coworkers 181, and Variant 2 currently

exists only as a boundary-integral method, but its obvious extension to a finite element
method make it appropriate to this discussion. Both Variants I and 2 begin with an '.

estimated velocity field and soive alternate hyperbolic and elliptic problems for stress and
* velocity, using ideas related to the obsevation of eqs. (I0a). Variant I uses a discrete

hyperbolic method to solve for the stress, and Variant 2 uses the fact that, in the current
velocity iterate, the Streamlines are characteristics, and thus the stress equations can be

reduced to ordinary differential equations along them. These methods do not alleviate
the drawbacks of the extreme methods, but rather represent a different balance of trade-
offs. They require separate extra stress calculation, but fewer unkowns in each phase
than the left-wing methods. Each added extra stress requires an extra pass through the

stress-equation solver, not more simultaneously active unknowns. The middle-of-the-road I
* methods require hyperbolic data, but Newton's method and transient analysis do not seem

asforbidding as with right-wing methods.

* However, the most important, aspect of the middle-of-the-road methods is the bridge
* between the extreme methods they illuminate. Combination of Variant 2 and the ana-

lytic streamline version of the right-wing method seem to show real promise of allowing
the development of a "supermethod," applicable to either differential or integral models,

which shares as much code as possible in the computations with either kind of constitutive
equation. The common portion of the code constructs the mesh and guides the nonlinear
iterations (among other functions) and constructs streamlines by the procedures already in
place in the analytic streamline version of the right-wing methods. Depending on whether

the constitutive equation is integral or differential. a stress-integral evaluator or a stress

ODE integrator is plugged in to evaluate the stress along the streamlines. The super-

method will take some time t~o develop, since solving hyperbolic equations numerically is
not a trivial task. For example, one can forsee some difficulty associated with the spec-

* ification of initial/end conditions for the stress ODEs on the streamlines. For incoming
streamlines, stress can probably can be specified as data, but on closed streamlines, peri-
odic end-conditions seem appropriate. How to do this without excessive "shooting" is not

* clear at present. But the possibility of the existence of a supermethod points out that the
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slot than they are in Stokes-flow. Careful comparison of Figures 4, 6, and 7 show that the

streamline nearest the slot is in virtually the same position in both Stokes-flow and the

non-Newtonian flow, but that in both Figures 6 and 7, the streamline dips measureably

futher down. Also, in distinct contrast to the flow of Figure 5, numerical results reported

elsewhere 14,10], and flow visualizations 141, the vortices in Figures 6 and 7 are higher up

and nearer the slot mouth than they are in Stokes-flow. It seems that with the concocted

constitutive equation, the flow in the slot interacts with and disturbs the channel-flow to

a much greater extent than it does in the Curtiss-Bird case.

It would be easy to dismiss the differences between the two constitutive equations dis-

cussed here as an unphysical consequence of the artificially concocted constitutive equation;

however, behavior like that observed with the concocted equation seems to be character-

istic of all the integral constitutive equations the author has tested, except the Curtiss-

Bird. And the behavior seems to be worse for other equations; the tinkering applied to

the Johnson-Segalman model has produced the second best constitutive equation to the

Cirtiss-Bird, measured by the ability to get to high De and/or L,. The difference between

the two constitutive equations seems to devolve from the amount of shear-thinning at a

given elasticity; this can be quantified by observing L, as a function of a in simple shear.

The Curtiss-Bird equation leads to an L, vs. a curve with positive curvature, while the

concocted equation has negative curvature. This leads to a prediction 1221, which is ob-

served numerically, that Pe/Ni should be larger at fixed a for the concocted equation than

it is for Curtiss-Bird. Referring to Figures 5 and 7, we can see that the component of

cross-:stream normal force acting along the streamline should be less for the Curtiss-Bird

fluid than it is for the concocted equation, since in the Curtiss-Bird case, the streamlines

are much more nearly parallel to the wall. Thus we are brought back to the old arguement

"' of Tanner and Pipkin 126], in which the non-zero values of Pe observed experimentally

are attributed to elastic restoring forces acting on a control volume over the slot. This

kind of explanation of viscoelastic hole-pressure seems to be borne out in these numerical

results, at least on a qualitative level. It is also interesting to observe that the same inter-

action between slot and channel-flow which causes relatively higher hole-pressure seems to

cause numerical difficulty. It is tempting to speculate that the numerical difficulty may be

due to an impending breakdown of steady channel-flow near the slot mouth, due to this

#J interaction.

,. 25



(ONCLUISIONS

The author believes that the numerical mrethods decribed here represent an auspi- 1%

cious beginning to the task of numerically modelling non-Newtonian flows; however, they

represent only a beginning. 'here needs to be a better theoretical understanding of the V

nature of the equations and Ihe result ing approximal ion schemes before definitive progress

can be made. Recent work illuminating the nature of the characteristics of the equations

moves in that direction and serves to illustrate common ground between the different

classes of constitutive theories proposed by rheologists. It is hoped that this can lead to a

more unified numerical approach to this challenging and demanding class of problems. In

the meantime, current numerical techniques. though only partially understood, seem to be

capable of uncovering physically imliportant consequences of non-Newtonian fluid behavior.

Acknowledgements: The numerical techniques for integral constitutive equations described

here were developed jointly by the author and B. Bernstein (Dept. Mathematics. I. I. T.).
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endeavor to understand this challenging class of problems.
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